Timber construction in the city of Milan

4 residential buildings with 9 storey

All the pictures and renderings: courteously of Arch. Fabrizio Rossi Prodi - Firenze

Dr. Andrea Bernasconi
Consultant of the Institute for timber technology and timber construction at the Technical University of Graz (Austria)
Professor for timber technology and construction at the University of applied sciences Western Switzerland, Yverdon (Switzerland)
Timber buildings for residential area in Milan

The begin of the project: a design competition in 2009

- promoted by Polaris Investments SRI
- with the goal of promoting ongoing experimentation in innovative approaches to social housing management
- calls for the preliminary design of a social housing project supplemented by resident, local and urban services

Winner Arch Fabrizio Rossi Prodi
- innovative technical solution: timber construction - CLT
- CLT construction:
 - high safety of the structure
 - high comfort of the residence
 - high flexibility by the organization of the space
Timber buildings for residential area in Milan

A project under construction - Via Cenni in Milan

Construction
- four 9-storeys buildings
- connection buildings as 2-storey buildings

Final project - bidding for general contractor
Tekne SpA, Milano
Rossi Prodi e Associati S.r.l., Firenze
Borlini & Zanini SA, Lugano

Owner - Promoter
Polaris Investments Italia SGR Spa
- Fondazione Housing Sociale
- Fondo Federale di Lombardia
Investment Fond with a part of public financing
Timber buildings for residential area in Milan

A project under construction - Via Cenni in Milan

Residential units
- 124 residences
- 2 to 4 rooms (1 to 3 sleeping rooms - 100/75/50 m2 area)

Others
- some space for urban services
- concierge and administration
- social spaces
- public area and garden

Surfaces
- 9300 m2 gross floor area
- 17000 m2 gross built floor area

Costs*
- 17 Mio. € all inclusive
- rent: 500 to 1000 €/month
- sales: 150'000 to 3000'000 €

* approximately
Timber buildings for residential area in Milan

A project under construction - Via Cenni in Milan

Building companies
- Carron Spa
- Servicelegno srl
- lignaconsult
- ETS engineering

Building timetable
- begin excavation: January 2012
- begin timber construction: June 2012
- building time all inclusive: 15 months
- at this time: building program delayed on 3 weeks
- completion expected without delay, according program
Timber buildings for residential area in Milan

A project under construction - Via Cenni in Milan

Building site
29.05.2012
Timber buildings for residential area in Milan

The project

9-storey Towers
- 4 similar buildings
- "full" timber construction

2-storey connection buildings
- 4 similar buildings
- timber construction with similar technology to the towers
Multi storey construction on CLT

The load bearing structure on CLT

9 storey, spatial, 3-d CLT-structure
- composed of CLT decks and walls
- full timber construction
- included stairwell and elevator shaft

ca. 27 m

19.1 m

13.6 m
Multi storey construction on CLT

The bearing structure on CLT

9-storey Towers
- 4 similar - not identic - constructions
- "stand alone" constructions
- full CLT timber building

2 storeys connection building
- normal CLT timber construction

Foundation
- one basement store under terrain surface
- concrete
- parking
- technical equipment's
Multi storey construction on CLT

Conditions - Requirements - and Challenges - for project and design

Form and dimensions
- high and slim building - tower
- fascinating und interesting

Earthquake risk
- not very high, but really existing
- important and with high significance by authority and population
- general earthquake engineering rules have to be strictly respected - principle of the structural project
- CLT-timber appropriate for the requirement

High number of storeys - height of the building
- relatively new with timber
- absolutely new on earthquake area

State of the Art
- some experience with similar buildings - but not by earthquake risk and by easier conditions of ratio height/large
- new and innovative, but under applications of actual technology and knowledge
- innovative application of the actual state of the art
Multi storey construction on CLT

Formal requirements

Special authority validation
- examination and approval of the engineering project by a special investigation commission of the national authority
- to assure that timber technology are capable to assure a correct safety level, according the buildings codes and the requirements for building with other material
- the project was evaluated from specialists on building engineers, on earthquake constructions and on high buildings

Timber solutions for engineering constructions
- have "simply" to respect and fulfil the general requirements for similar buildings
- doesn't allow to use the same solutions and details as the "timber houses" with one or two storeys
CLT - solid timber decks and walls

Spatial structural timber construction for high engineer performance

The "revolution" on the timber construction - may be on the construction

CLT: the modern timber material

plane, solid timber surfaces for structural elements
CLT 9 storey building - via Cenni, Milan

Structure composed of CLT-decks and walls

- **Decks - horizontal structural sheets**
 - intermediate decks
 - horizontal bracing elements
 - main component of the structure

- **Walls - vertical bearing elements**
 - continuous, not interrupted, vertical part of wall needed
 - vertical bracing elements
 - openings are possible, but the wall part above opening are not relevant for the structure
 - other walls - without structural function - are always possible

Position - axis - of the walls over 9 storeys

Dimensions
- 19.1 m
- 13.6 m
CLT 9 storey building - via Cenni, Milan

CLT-wall elements

- **Level 1:** Thickness 200 mm
- **Levels 2, 3 and 4:** Thickness 180 mm
- **Levels 5 and 6:** Thickness 160 mm
- **Levels 7 and 8:** Thickness 140 mm
- **Level 9:** Thickness 120 mm

Characteristics

- More thickness in the lower storeys
- CLT with not less than 5 layers for better horizontal bracing

Wall panels interrupted at decks level

- Because production, transportation and construction
- For better regularity of the structure
- Connections have to be accurately designed
CLT 9 storey building - via Cenni, Milan

Structure composed of CLT-decks and walls

Balcony
- fundamental architecture elements
- variability and flexibility needed

Balcony
- added elements on the spatial structure
- without influence on the regularity of the main structure
- allows to respect and fulfil the requirements of the architecture
- can be open or closed (lateral wall, deck, windows, ...)

Position - axis - of the walls over 9 storeys

Cantilever decks
Cantilever walls
CLT 9 storey building - via Cenni, Milan

CLT-decks elements

- Main direction (outside layers) of the deck
- deck span
- ev. cantilever
- appoggi sulle pareti

Dimensions:
- 13.6 m
- 19.1 m
- 6.70 m

Layers:
- span < 5.80 m: 200 mm - 5 layers
- span < 6.70 m: 230 mm - 7 layers
Connections are the essential structural corposant

Design and construction of "connections lines":
- not just connection points - but a "continuous stitching" to assure high performance in the load transfer
Example of the connections

Special connection for CLT elements with high performance

Special connection for multi-storey buildings or for important structural requirements

Viti VG f 8; $a = 30^\circ$; $l = \text{ca.} 300 \text{ mm}$

- $s = 100 \text{ mm} = 2 \times 10 / \text{m'}$
- $s = 50 \text{ mm} = 2 \times 20 / \text{m'}$

Viti VG f 8; $a = 45^\circ$; $l = \text{ca.} 450 \text{ mm}$

- $s = 100 \text{ mm} = 2 \times 10 / \text{m'}$
- $s = 50 \text{ mm} = 2 \times 20 / \text{m'}$

Connection with self-tapping screws

- high performance on resistance
- high performance on stiffness
- easy in the application
- without steel plates or similar

Dr. A. Bernasconi
Milan, 7 June 2012

Promo Legno
European Wood Network Meeting 2012
9-storey CLT Building in via Cenni a Milano - page 18
Example of the connections

Special connection for CLT elements with high performance

Connection with self-tapping screws
- high performance on resistance
- high performance on stiffness
- easy in the application
- without steel plates or similar
CLT 9 storey building - via Cenni, Milan

Example of the connections

Special connection for CLT elements with high performance
Design principle
- generally: timber structure are adequate and interesting
- spatial wall and decks structure are adequate
- CLT-structure are very good qualified

Essential conditions
- right concept for the structure
- application of the basic of earthquake engineering
- correctly designed

In case of higher seismic risk
- the concept (design of structure and connection) can be applied for higher performance or for higher seismic risk - and seismic load conditions
Numerical modelling and calculation

Static structural analysis
- confirmation internal forces
 $M_x, M_y, V_x, V_y, N_x, N_y, N_{xy}$
- forces on connections

Dynamic analysis
- resonance frequencies
- earthquake analysis

Parametric numerical analysis
- stiffness of connections K_{ser}
- sensibility of the modelling

Modelling
- high performance software required
- user interfaces not optimized for this kind of systems
CLT 9 storey building - via Cenni, Milan

Principle of the fire protection

Requirement
- Fire compartments: REI60
- Other structural elements: R60

Realisation: full protection of the timber by fire resistant sheeting
- sheeting EI60 of all structural timber elements
- some other singular prescription

Decks:
- upper surface: sheeting EI60
- lower surface:
 floor construction EI60
- fire safety REI 60 given also by branding time of CLT

Internal walls:
- sheeting on both sides EI60

External walls:
- internal sheeting EI60
Remarks about fire protection - possible discussion points

Principle of fire protection: fire resistant sheeting to obtain EI60
- sheeting should be so near as possible to the protected element (CLT wall)
- space between protected element and protection = risks and problems ...

Special solution required
- protection of sheeting perforations
- later interventions by residents not under control

Safer solution
- timber directly protected
- installations not relevant for fire protection

Installations inside of fire-protected space
Installations outside of fire-protected space
Applied solutions for the building via Cenni, Milan

Modern and innovative solutions - but already applied in recent buildings

Bellinzona - CH - 2010 - Arch. D. Caramma

Lugano - CH - 2011 - Arch. M. Marzi
Timber buildings for residential area in Milan

Conclusions

New and ambitious project, but according to
- the actual timber engineering knowledge
- the actual state of the art on timber construction
- multi storey building rules in earthquake area

Full timber construction
- spatial, 9 storey CLT structure
- first time in earthquake area
Timber buildings for residential area in Milan

Conclusions

Interesting example of the State of the art
- CLT for ambitious engineering constructions
- a new way for urban and multi storey buildings
- timber engineering for modern architecture
- CLT engineering for architecture